

Nicolai Rosager Weber, DVM, PhD SEGES Danish Pig Research Centre Zero Zinc Summit, Copenhagen, June 2019

Outline of presentation

- Brief description of the Danish pig production
- Antibiotic regulations in Denmark
- The Danish zinc history
- Field experiences on weaning without medical doses of zinc oxide

Danish pig production, 2018

- 3,100 farm units with pigs
- 1 million sows → 32.5 million pigs
 - 18.0 million slaughtered in Denmark 90% exported
 - 14.5 million pigs exported at 30 kg to other European countries

Productivity in the Danish pig production, 2017

	Key figures	Average 2017
Sow herds	Weaned pigs per year per sow	33.3
	Live-born pigs per litter	16.9
Weaner period	Average daily gain 7-30 kg, gram per day	453
	Feed conversion ratio 7-30 kg, kg per kg weight gained	1.88
	Mortality 7-30 kg, %	3.1
Finisher period	Average daily gain 30-110 kg, gram per day	971
	Feed conversion ratio 30-110 kg, kg per kg weight gained	2.79
	Mortality 30-100 kg, %	3.1

Antibiotic regulations in the Danish pig production

- Antibiotics can only be prescribed by certified vets
- Sales and distribution through pharmacies
- No economic profit on prescribed drugs
- Growth promoters banned for approx. 20 years
- No preventive treatments allowed
- All professional pig herds = Herd Health Contracts
- Initiation of treatment by farmer after veterinary instructions
- Focus on reducing antibiotic use in food producing animals
- Denmark has a large pig industry = Main user of antibiotics

The Yellow Card Initiative

- Established in 2010 by the Danish Veterinary and Food Administration
- Defines thresholds in Animal Daily Dose (ADD) per 100 animals per day
- If a herd exceeds thresholds = increased supervision and fees
- Thresholds have been regulated down fives times since 2010
- Differentiated ADDs on "high risk" antimicrobials
 - No use of:
 - Quinolones (2002), 3./4. g. Cephalosporins (2010) & Colistine (2017)

Action plan – phasing out medical zinc in Danish pig production

Goal

- 1. No negative effect on animal welfare increased disease frequency
- 2. Maintain a low and prudent antibiotic usage
- 3. Minimal negative effect on productivity and mortality

Actions points

- 1. Research and development multiple disciplins and collaborators
- 2. Communication focus new knowledge need to be implemented in the field
- 3. International focus an urgent issue for all EU member states

Medical use of zinc in the Danish pig production

- Commonly used in weaner diets since early 90's
- 2004: Magistral ZnO allowed to control PWD – Max. level 2500 ppm Zn, requiring a prescription
- 2011: First registered ZnO product marketed
- 2014: Two additional ZnO products marketed
- June 2022: All marketed ZnO products will be withdrawn

In recent years – reduction in zinc & antibiotic usage

Reduction driven by reduced dose of medical zinc in weaner diets

SEGES trial report NO. 1101(2017):

2,500 ppm 1,500 ppm zinc = same productivity and AB usage

Implemented on many Danish pig farms resulting in a reduction in the national use of zinc oxide*

Few farms has fully phased out the use of medical zinc

^{*}Based on questionnairy answers & reports from the field veterinarians

Danish field experiences

Purpose:

Identify common features in weaner herds with no medical use of zinc

- Herds recruited mainly through network of field veterinarians
- Herd owners interviews:
 - Management, herd health, feed, hygiene, personnel, etc.
- Additional information:
- Antibiotic usage Vetstat
- Feed recipes weaner diets
- Productivity reports
- Vaccination schemes

Results, Danish field experiences

Herd description, 26 weaner herds (600.000 weaners/year)

Production size	1.650-80.000 weaners per herd			
Avg. lactating days	29.4 days			
Weaning weight	5.5 – 8.5 kg			
Avg. daily weight gain, 7 to 30 kg	462 grams (nat. avg. 2018 = 462 grams 3.1%)			
Avg weaner mortality	2.1% (nat. avg. 2018 = 3.1%)			

23/26 herd has weaned pigs without medicinal zinc fore more than a year

Antibiotic use, in herds weaning without use of medical zinc

Nat. avg. 2018, weaners = Approx. 10 ADD/100 animals 15/26 herds, pen level treatment the first 14 days post weaning

Common approaches – Protein/lysine levels

Protein/lysine levels, weaner diets	min	max	average	Recommented levels
SID protein (g/FU)	113	146	135,6	144
SID Lysine (g/FU)	6,7	12	10,8	10,6
Crude protein (%)	14,8	20,5	18,8	

Common approaches – Feed intake

Special measures to increase feed	# farms	
intake after weaning		
Extra feeding on the floor	10	
Extra feeding spaces in troughs	5	
Extra drinking spaces	4	
Supply with milk products	3	
Gruel feed	2	
Other measures	2	
No special measures	2	

Common approaches – Trained personnel

Employment period:

20/26 herds: Manager of weaners employed more than a year

Experience:

18/26 herds: Manager of weaners have worked with weaners more than 3 years

Herd specific solutions - examples

Herd A

500 sows, 34 pigs weaned/sow/year, weaning weight approx. 6,7 kg

Motivation: New herd veterinarian – focus on reduction of antibiotics & zinc

Herd specific approach: extra space in farrowing compartments, more robust pigs at weaning

Herd specific solutions - examples

Herd B

1.400 sows, 37 pigs weaned/sow/year, weaning weight 5,5-5,8 kg Weaner DWG 450 grams, mortality 3.5%

Motivation: Levels of zinc in slurry, no usage of unnesserary "aids"

Herd specific approach: Strict post weaning feeding and water strategy, high health, extra space in weaner compartments

Herd specific solutions - examples

Herd C

2.500 sows, 36 pigs weaned/sow/year weaning weight 6,0 kg

Weaner DWG 478 grams, mortality 3.5%

Motivation: Manager wants to prove he can do it!

Herd specific approach: Reduced protein and change of protein sources in weaner diets

Controlling post weaning diarrhoea – no common solutions

Predetermining factors

Genetics Passive immunity Weaning age Anorexia post-weaning

Contributing factors

Housing condition Stocking density Feed regimen Co-infections

Toxin-producing E. coli

Source: Mod. from Rhouma et. Al, 2017

Conclusions

- The goal is cost-effective solutions without increase in antibiotic use
- Not an easy task for the majority of Danish farms
- Zinc is still at common approach to control PWD in DK
- Zinc usage dropping reduced doses is the main driver
- Farms without medical usage of zinc have:
 - Reduced protein levels in weaner diets
 - Focus on feed intake after weaning
 - Trained personnel with a longer employment period stability

No common solutions

– each farmer need to learn what works in his/her farm!

ZERO ZINC SUMMIT 2019

17 JUNE AND 18 JUNE 2019, COPENHAGEN, DENMARK

Thank you for your attention

Questions?

